

You may use following physical constant if needed.

Velocity of light = $3.0 \times 10^8 \text{ m s}^{-1}$

Plank Constant = $6.6 \times 10^{-34} \text{ J s}$

1. A boat which has a speed of 5 km h^{-1} in still waters crosses a river of width 1 km along the shortest possible path in 15 minutes. The speed of the river in km h^{-1} is,

(1) 1 (2) 3 (3) 4
(4) $\sqrt{41}$ (5) 8

2. Air is blown into a soap bubble of radius r to double its radius. If the surface tension of the soap solution is S , the work done in the process is,

(1) $8\pi r^2 S$ (2) $12 \pi r^2 S$ (3) $16 \pi r^2 S$
(4) $20 \pi r^2 S$ (5) $24 \pi r^2 S$

3. A fast train moving at 40 ms^{-1} passes by a stationary observer, emitting a whistle of frequency 300 Hz. If the velocity of sound waves is 340 m s^{-1} , then the change in the apparent frequency of the sound, just before and just after the train passes by the observer, will be nearly

(1) 32 Hz (2) 40 Hz (3) 72 Hz
(4) 84 Hz (5) 96 Hz

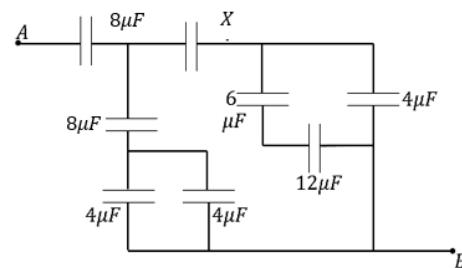
4. One end of a uniform rod of length 1 m is placed in boiling water, while the other end is placed in melting ice. A point P on the rod is maintained at a constant temperature of 80°C . The mass of steam produced per second is equal to the mass of ice melted per second. If the specific latent heat of vaporization is 7 times the specific latent heat of fusion, the distance of P from the steam chamber must be,

(1) $1/9 \text{ m}$ (2) $1/8 \text{ m}$ (3) $1/7 \text{ m}$
(4) $1/10 \text{ m}$ (5) $1/12 \text{ m}$

5. Consider the statements below regarding wave properties

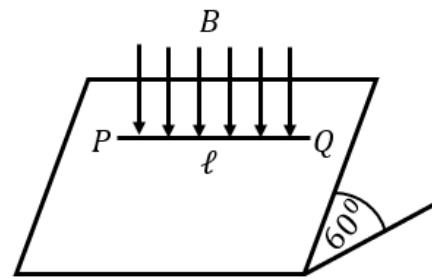
(A) The frequency and intensity do not change when waves existing in different planes are polarized
(B) Any wave can refract and interfere
(C) Standing waves and beats can be considered as an outcome of superposition of waves

Which one is true?

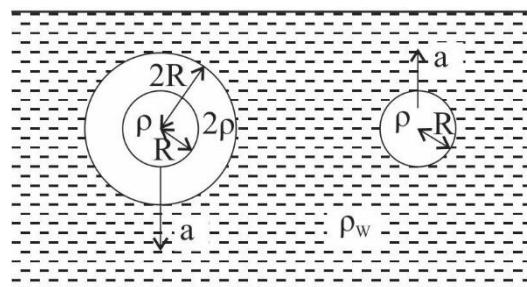

(1) A only (2) B only
(3) C only (4) B and C only
(5) All A, B and C

6. A sound source and an observer start from a same point and the sound source moves towards north while the observer moves towards east with the velocities 3 ms^{-1} and 4 ms^{-1} respectively. After the first second, if the observer feels a sound intensity level of $x \text{ dB}$ how much more time will it be taken for it to be $(x - 20) \text{ dB}$.

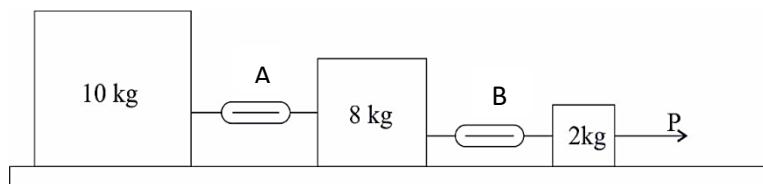
(1) 4 s (2) 5 s (3) 9 s
(4) 10 s (5) 20 s


7. The capacitance in the circuit shown in the figure are given in μF . If the equivalence capacitance between A and B in the circuit is $4 \mu F$ the capacitance of X is

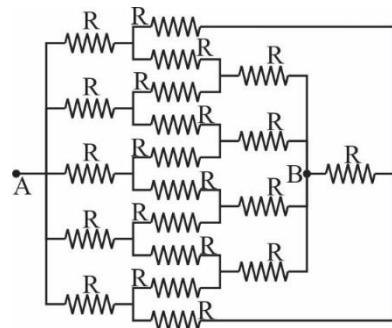
- (1) $2 \mu F$
- (2) $4 \mu F$
- (3) $8 \mu F$
- (4) $16 \mu F$
- (5) $32 \mu F$


8. As shown in the figure a conductive horizontal rod PQ of length (l) 10 cm and mass $10 g$ is placed on a frictionless plane of angle 60^0 to the horizontal. There is a uniform vertical magnetic field with flux density B in the area. When a current of $1.73 A$ is going through the rod it will be at equilibrium under gravitational and magnetic forces. The direction of the current and value of B is

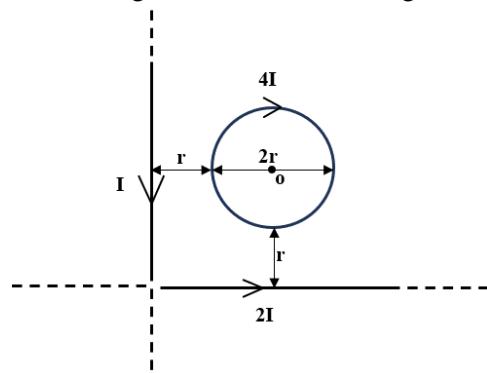
- (1) Current PQ direction and $2.0 T$
- (2) Current QP direction and $1.0 T$
- (3) Current PQ direction and $1.0 T$
- (4) Current PQ direction and $4.0 T$
- (5) Current QP direction and $2.0 T$


9. A sphere of radius R is made out of material of density ρ . A shell made of material of density 2ρ surrounds it so that the total radius is $2R$. The compound object moves downwards in a liquid of density ρ_w with an acceleration a . A sphere of radius R made out of material of density ρ and without shell when released from the bottom of a liquid of density ρ_w will rise with acceleration a . When viscous forces are neglected $\frac{\rho}{\rho_w}$ will be.

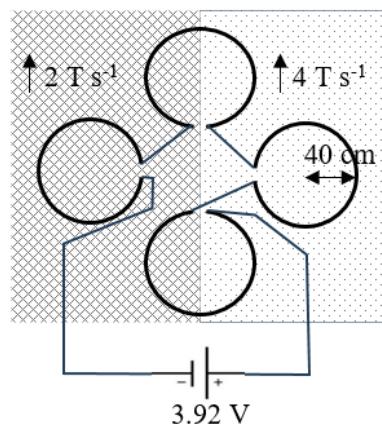
- (1) $5/8$
- (2) $11/14$
- (3) $7/11$
- (4) $12/7$
- (5) $1/2$


10. The figure shows a situation of three wooden boxes of masses 10 kg , 8 kg and 2 kg pulled together by a force $P=100 \text{ N}$. The kinetic frictional coefficient between wooden blocks and the table is 0.2 . If the all spring scales are massless, the ratio of the readings of spring scale A and the readings of spring scale B is

- (6) $1:5$
- (1) $2:7$
- (2) $5:4$
- (3) $5:9$
- (4) $1:1$


11. All the resistors shown in the figure is R . The equivalent resistance between A and B is,

- (1) $10 R$
- (2) $5 R$
- (3) $2R$
- (4) $R/2$
- (5) $R/10$


12. Current I and $2I$ flow in two infinite conducting wires and current $4I$ flows in circular loop with diameter $2r$ and n number of turns as shown in the figure. The resultant magnetic flux density at the center of the loop is

- (1) $\frac{\mu_0 I}{2r} \left(\frac{5\pi n - 3}{4\pi} \right)$
- (2) $\frac{\mu_0 I}{2r} \left(\frac{8\pi n - 3}{2\pi} \right)$
- (3) $\frac{\mu_0 I}{2r} \left(\frac{5\pi n - 4}{2\pi} \right)$
- (4) $\frac{\mu_0 I}{2r\pi} \left(\frac{3\pi n - 3}{2\pi} \right)$
- (5) $\frac{\mu_0 I}{2r} \left(\frac{4\pi n}{2\pi} \right)$

13. Four circular loops each with radius 40 cm and resistance 1Ω are connected to a battery with EMF 3.92 V and zero internal resistance as shown in the figure. As shown in the figure the rate of increase of magnetic flux density is 2 T s^{-1} into the plane in one side and the rate of decrease of magnetic flux density is 4 T s^{-1} out of the plane on the other side. If the resistance in the other parts of the circuit is negligible, the current flow through the circuit is (Take $\pi = 3$)

- (1) 0.10 A
- (2) 0.15 A
- (3) 0.25 A
- (4) 0.50 A
- (5) 1.46 A

14. Two charges with charge Q_1 and Q_2 rotate in circular paths with radii r_1 and r_2 and with angular velocities ω_1 and ω_2 . Two circular paths are perpendicular to each other having same center. The magnetic flux density at the center is

(1) $\frac{\mu_0}{2} \sqrt{\frac{Q_1^4 \omega_1^2}{r_1^2} + \frac{Q_2^4 \omega_2^2}{r_2^2}}$

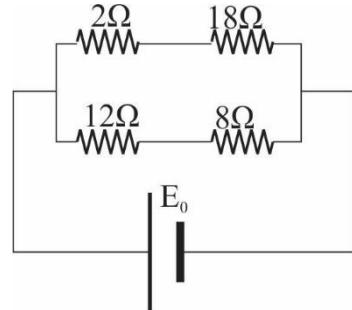
(2) $\frac{\mu_0}{4\pi} \sqrt{\frac{Q_1^2 \omega_1^2}{r_1^2} + \frac{Q_2^2 \omega_2^2}{r_2^2}}$

(3) $\frac{\mu_0}{2\pi} \sqrt{\frac{Q_1^2 \omega_1^2}{r_1^3} + \frac{Q_2^2 \omega_2^2}{r_2^3}}$

(4) $\frac{\mu_0}{4\pi} \sqrt{\frac{Q_1 \omega_1}{r_1^2} + \frac{Q_2 \omega_2}{r_2^2}}$

(5) $\frac{\mu_0}{4\pi} \left(\frac{Q_1^2 \omega_1}{r_1^2} + \frac{Q_2^2 \omega_2}{r_2^2} \right)$

15. If the power dissipation by the 2Ω resistor shown in the figure is 10 W , the power dissipation by the 8Ω resistor is


(1) 24 W

(2) 36 W

(3) 40 W

(4) 48 W

(5) 80 W

16. All the resistors shown in the figure is 10Ω and electromotive force of all the batteries is $E_0 = 6\text{ V}$. Internal resistance of each battery can be neglected. The potential difference between A and C is

(1) 6 V

(2) 12 V

(3) 18 V

(4) 24 V

(5) 36 V

17. The final temperature when mixing mass m from liquid A at $30\text{ }^\circ\text{C}$ and mass $2m$ from liquid B at $40\text{ }^\circ\text{C}$ is $36\text{ }^\circ\text{C}$. The final temperature when mixing mass $2m$ from liquid B at $40\text{ }^\circ\text{C}$ and mass $3m$ from liquid C at $50\text{ }^\circ\text{C}$ is $45\text{ }^\circ\text{C}$. The final temperature when mixing mass m from liquid A at $30\text{ }^\circ\text{C}$ and mass $3m$ from liquid C at $50\text{ }^\circ\text{C}$ is, (Assume no heat is absorbed by the container and no heat loss to the environment)

(1) $38\text{ }^\circ\text{C}$

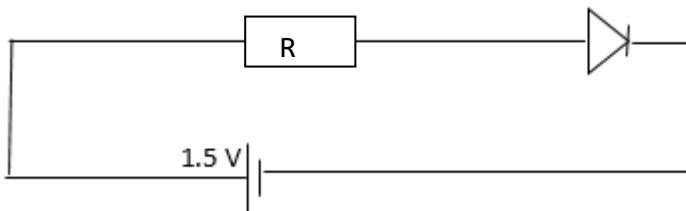
(2) $40\text{ }^\circ\text{C}$

(3) $42\text{ }^\circ\text{C}$

(4) $45\text{ }^\circ\text{C}$

(5) $48\text{ }^\circ\text{C}$

24. An object of mass m kg is taken from equator to the pole of the Earth. Radius, gravitational acceleration and rotation period of the Earth are R , g and 24 hours respectively. After moving from equator to pole of the Earth, weight of the object is


- (1) remaining the same
- (2) changed by $mg - \frac{4\pi^2 Rm}{(24 \times 3600)^2}$
- (3) changed by $\frac{4\pi^2 Rm}{(24 \times 3600)^2}$
- (4) changed by $mg + \frac{(24 \times 3600)^2 Rm}{4\pi^2}$
- (5) changed by $2mg + \frac{4\pi^2 Rm}{(24 \times 3600)^2}$

25. In a common emitter amplifier, the load resistance is 5000Ω and the input resistance is 1000Ω . If the peak value of the signal voltage is 10 mV and the current gain is 50, then the peak value of the output voltage is.

- (1) 1.25 V
- (2) 2.50 V
- (3) 3.75 V
- (4) 5.00 V
- (5) 2.25 V

26. The diode used in the circuit shown in the figure has a constant voltage drop of 0.5 V at all currents and maximum power rating of 100 mW . The value of the resistor R , connected in series with the diode for obtaining maximum current should be

- (1) 5.0Ω
- (2) 5.6Ω
- (3) 6.8Ω
- (4) 20.0Ω
- (5) 40.0Ω

27. While a car is stopped at a traffic light in a rainy day, raindrops strike the roof of the car vertically. The area of the roof is 5.0 m^2 . Each raindrop has a mass of $3.7 \times 10^{-4} \text{ kg}$ and speed of 2.5 ms^{-1} before impact and is at rest after the impact. If, on average at a given time, 150 raindrops strike each square meter, what is the impulse of the rain striking the car?

- (1) 0.14 Ns
- (2) 0.45 Ns
- (3) 0.69 Ns
- (4) 11.0 Ns
- (5) 21.0 Ns

28. A bicycle wheel of radius 0.70 m is rolling without slipping on a horizontal surface with an angular speed of 2.0 revs^{-1} . When the cyclist begins to uniformly apply the brakes, the bicycle stops in 5.0 s . How far did the bicycle travel during the 5.0 seconds of braking?

- (1) 1.8 m
- (2) 8.8 m
- (3) 22.0 m
- (4) 42.0 m
- (5) 44.0 m

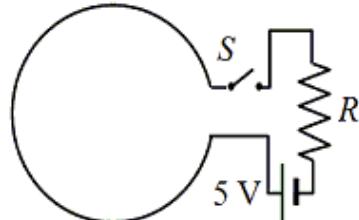
29. A container containing 115 kg of an ideal gas has a volume of 6.5 m^3 . If the gas exerts a pressure of $4.0 \times 10^5 \text{ Pa}$, what is the *rms* speed of the molecules?

- (1) 180 ms^{-1}
- (2) 260 ms^{-1}
- (3) 310 ms^{-1}
- (4) 390 ms^{-1}
- (5) 420 ms^{-1}

30. A Carnot engine operates between hot and cold reservoirs with temperatures $527\text{ }^{\circ}\text{C}$ and $-73\text{ }^{\circ}\text{C}$, respectively. If the engine performs 1000 J of work per cycle, how much heat is extracted per cycle from the hot reservoir? Note the efficiency of a Carnot engine is given by $\eta = 1 - \frac{T_C}{T_H}$ where T_H and T_C are the absolute temperature of the hot and cold reservoirs.

- (1) 878 J (2) 1163 J (3) 1333 J
(4) 1527 J (5) 2010 J

31. A source moving through water at 10.0 ms^{-1} generates water waves with a frequency of 5.0 Hz. The speed of these water waves relative to the water surface is 20.0 ms^{-1} . The source approaches an observer who is at rest in the water. The wavelength observed by the observer is,


- (1) 1.0 m (2) 2.0 m (3) 4.0 m
(4) 6.0 m (5) 8.0 m

32. A circular loop of wire with a diameter of 0.626 m is rotated in a uniform electric field to a position where the electric flux through the loop is a maximum. At this position, the electric flux is $7.50 \times 10^5\text{ N m}^2\text{ C}^{-1}$. What is the magnitude of the electric field?

- (1) $1.07 \times 10^6\text{ N C}^{-1}$ (2) $2.44 \times 10^6\text{ N C}^{-1}$
(3) $4.24 \times 10^6\text{ N C}^{-1}$ (4) $6.00 \times 10^6\text{ N C}^{-1}$
(5) $8.88 \times 10^5\text{ N C}^{-1}$

33. The figure shows a circular, conducting loop that is connected to a 5.0 V battery and a switch S . Immediately after the switch S is closed, the current through the loop changes at a rate of 15 A s^{-1} and the emf induced in the loop has a magnitude of 5.0 V . The *self-inductance* of the coil is,

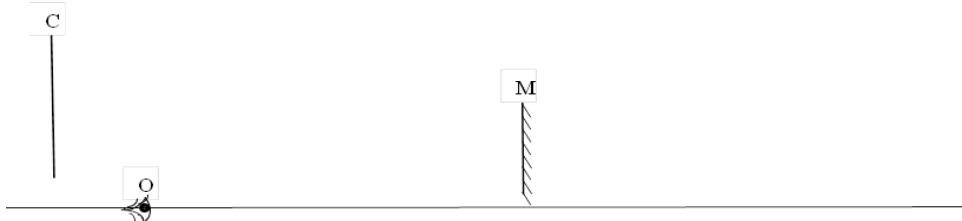
- (1) 0.3 H (2) 0.6 H (3) 1.5 H
(4) 3.0 H (5) 5.0 H

34. A distant space probe is programmed to emit a radio signal toward Earth at regular time intervals. One such pulse arrives on Earth 6.92 s after it is emitted from the probe. What is the approximate distance from the Earth to the probe?

- (1) $7.40 \times 10^{10}\text{ m}$ (2) $3.50 \times 10^{10}\text{ m}$
(3) $8.76 \times 10^9\text{ m}$ (4) $6.94 \times 10^9\text{ m}$
(5) $2.08 \times 10^9\text{ m}$

35. A ray of light originates in medium **A** and is incident upon medium **B**. For which one of the following pairs of indices of refraction for **A** and **B** (n_A and n_B) is total internal reflection *not possible*?

- (1) 1.12, 1.06 (2) 1.36, 1.00
(3) 1.26, 1.15 (4) 2.54, 1.63
(5) 1.28, 1.36


36. The de Broglie wave length of a neutron of mass $m = 1.67 \times 10^{-27}$ kg that has a speed of 5.0 ms^{-1} is given by
- (1) 79 nm (2) 162 nm (3) 395 nm
 (4) 529 nm (5) 1980 nm
37. A beam of 4.5 MeV neutrons is directed at a tissue sample of mass 0.030 kg. Each second, 1.5×10^6 neutrons strike the sample. If the relative biological effectiveness of these neutrons is 7.0, what biologically equivalent dose (in rem) is received by the sample in 65 seconds?
- (1) 0.23 rem (2) 0.55 rem (3) 1.6 rem
 (4) 19 rem (5) 33 rem
38. Determine the amount of energy released in the following reaction:
- $${}^2_1\text{H} + {}^2_1\text{H} \rightarrow {}^4_2\text{He}$$
- Use the following information for your calculation:
 ${}^2_1\text{H}$ has a mass of 2.014 102 u, ${}^4_2\text{He}$ has a mass of 4.002 603 u, and 1 u = 931.5 MeV.
- (1) 0.20 MeV (2) 23.8 MeV (3) 11.9 MeV
 (4) 257 MeV (5) 7480 MeV
39. In the medical diagnostic technique known as positron emission tomography (PET), a positron and an electron annihilate each other and two γ -ray photons are emitted. The angle between the momentum vectors of the two photons is?
- (1) 0° (2) 45° (3) 90°
 (4) 180° (5) 270°
40. Assume the intensity of the sound made by a jet engine at a distance d is $4.0 \times 10^{-2} \text{ W m}^{-2}$. If there are three jets A, B and C, each at distances d , $2d$ and $4d$ from a person respectively what is the sound level at the point the person is at?
- (1) 103 dB (2) 105 dB (3) 107 dB
 (4) 109 dB (5) 111 dB
41. Two cars (A and B), each emitting sound with 100 Hz, are running towards a point P in a flat empty land. The velocity of the two cars is 10 m s^{-1} and they are at a same distance from the point P at any given time. The angle the two cars made looking from point P (APB angle) is 60° . What is the beat frequency heard by the driver in car B? Speed of sound 330 m s^{-1} .
- (1) 0 Hz (2) 1 Hz (3) 2 Hz
 (4) 3 Hz (5) 6 Hz
42. Water at boiling point is in a boiler without a cover on outer surface is connected to a heater of ratings 40Ω , 200 V. When it is working under a 100 V potential difference, the rate of releasing water vapor is $M_1 \text{ kg s}^{-1}$. When the same heater is working under a 200 V potential difference, the rate of releasing water vapor is $M_2 \text{ kg s}^{-1}$. The latent heat of evaporation of water is,
- (1) $\frac{750}{M_2 - M_1}$ (2) $\frac{1500}{M_2 - M_1}$ (3) $\frac{600}{M_1 - M_2}$
 (4) $\frac{500}{M_2 - M_1}$ (5) $\frac{150}{M_1 - M_2}$

43. Which one of the following energy values would be characteristic of a *thermal neutron*? Assume Boltzmann's constant is $8.617 \times 10^{-5} \text{ eV K}^{-1}$ and room temperature is 27°C .

- | | |
|--------------|------------|
| (1) 0.04 MeV | (2) 3 eV |
| (3) 0.03 eV | (4) 0.4 eV |
| (5) 100 eV | |

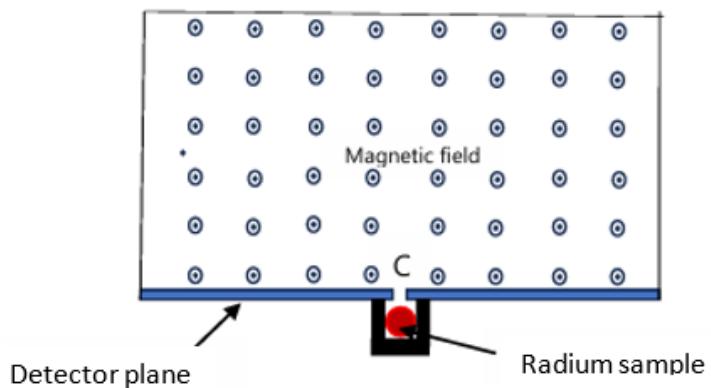
- Use the following information for Questions 44 & 45

A sight-testing chart (C) of dimensions (height \times width) 120 cm \times 80 cm is to be viewed by reflection in a plane mirror. An observer O is standing 2.75 m in front of a plane mirror (M), while the chart C hangs in a wall 3.25 m distance from M and behind him.

44. What is the smallest height of the mirror that can be used to observe the complete image of the chart?

45. If the observer's eye and the lower edge of the chart are respectively 1.2 m and 1.5 m above the ground, what is the distance from the ground to the bottom edge of the mirror?

- Write the relevant answer for question numbers 46 to 50 in the blank space on the answer sheet.


46. Rutherford's well-known gold foil experiment involved bombarding a thin gold leaf with alpha particles, allowing him to estimate the diameter of the gold nucleus. What is the radius of a gold nucleus ($^{197}_{79}Au$) in nanometers if an alpha particle with an initial energy of 0.500 MeV undergoes a head-on collision with the nucleus. Assume the closest approach between the gold nucleus and alpha particle. Consider the gold nucleus to remain at rest during the collision

47. A small radioactive source of ^{137}Cs is used in a laboratory. It has a strength of 1 μCi . What is the number of gamma rays emitted per second?

48. What is the Q-value for nuclear reaction (in Jules) ${}^{15}_7N + {}^1_1H \rightarrow {}^4_2He + {}^{12}_6C$?
 ${}^{15}_7N = 15.000109u, {}^1_1H = 1.007825u, {}^4_2He = 4.002603u, {}^{12}_6C = 12.000000u$
 $1u = 931.494 \text{ MeV}$.

- Use the following information for the question numbers 49 and 50.

A radioactive sample of $^{226}_{88}Ra$, which decays through α particle emission is placed very close to a cylindrical vacuum chamber with a particle detector plane whose cross-sectional view is shown in the figure below. There exists a uniform magnetic induction \vec{B} in the direction as shown. The magnitude of this applied magnetic field is $B = 1.5$ T and the radius of the cylindrical chamber is 0.8 m. Take mass of the α particle, $m_\alpha = 6.645 \times 10^{-27}$ kg. $e = 1.6 \times 10^{-19}$ C

49. What is the maximum kinetic energy (in MeV) of the α particles that would be hitting the detector plane?
50. It was observed that the α particles emitted from the Radium source hits the detector plane at a distance 66.52 cm from the center of the chamber. What is the total energy E_t , emitted during the escape of the α -particle
