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1. ABSTRACT 

Solar radio bursts impact society's technical infrastructure and environment. This study 

investigates Solar Radio Bursts and builds a deep neural network to classify the bursts according 

to their main five types. Manual classification of solar radio bursts is challenging due to 

continuous 24-hour observation and noises in spectrograms. Thus, a deep neural network was 

implemented to classify main types I, II, III, IV, and V. FITS files from the e-Calisto network 

were used as raw data. Gaussian, erosion, dilation, and thresholding techniques were used to 

reduce the noise of images and get clearer spectrograms. Initially, a Convolutional Neural 

Network model was used to classify spectrograms as bursts or non-bursts, achieving a validation 

accuracy of 98.55% and a loss of 8.15%. Subsequently, features were extracted from bursts and 

classified by their types using pre-trained CNN models VGG16, ResNet, and AlexNet. The 

training accuracy and loss values for VGG16, ResNet, and AlexNet were 98.72% and 5.87%, 

86.50% and 40.90%, 90.93% and 26.88%, respectively. Validation accuracy and loss were 

87.8% and 33.35% for VGG16, 73.61% and 81.9% for ResNet, and 76.9% and 77.24% for 

AlexNet. Among the models, VGG16 with ImageNet proved the most effective for burst-type 

classification based on confusion matrix, accuracy, and loss values. The obtained results can 

facilitate the development of a fully automated system with a user interface for classifying solar 

radio bursts and extracting their primary features. Furthermore, this finding can be utilized to 

create a database that classifies solar radio bursts recorded since 1978. 

 

2. INTRODUCTION 

Solar flares release immense amounts of energy, resulting in the heating of the solar atmosphere 

and causing disturbances in Earth's ionosphere [1]. The identification and classification of solar 

radio bursts play a crucial role in predicting space weather events that can disrupt satellites, 

power grids, and communication systems. Solar activity can severely impact GPS accuracy, 

aviation operations, and radio communications.[2] These disruptions can interfere with radio 

signals, degrade GPS accuracy, and, in extreme cases, cause radio blackouts or damage satellites 

and spacecraft. By accurately detecting and categorizing these bursts, we can enhance space 
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weather forecasting, enabling timely precautions to protect critical infrastructure and 

technological systems.[3] Solar radio bursts, which are sudden emissions of electromagnetic 

radiation from the Sun, are typically linked to solar flares and coronal mass ejections (CMEs), 

violent expulsions of plasma and magnetic energy. These bursts are classified into five distinct 

types: Type I (noise storm), Type II (slow drift), Type III (fast drift), Type IV (broadband 

continuum), and Type V (continuum at meter wavelengths). 

Historically, classifying these bursts has been a complex, manual process due to the unique 

characteristics of each burst. To automate this task, deep learning techniques have been applied. 

Deep learning, a subset of artificial intelligence, leverages neural networks to automatically 

extract features and make predictions. For this study, spectrogram data from the e-Callisto 

international network, which provides continuous solar corona monitoring, serve as the primary 

data source. These data, spanning back to 1978, include essential information such as frequency 

ranges and intensity levels. 

This research utilizes Convolutional Neural Networks (CNNs) to first determine whether a 

spectrogram contains a burst and subsequently classify the burst type. Pretrained models, such as 

ImageNet, were fine-tuned for this specific task, and the models' performance was evaluated to 

identify the most effective architecture for accurate classification [11]. 

 

3. METHODOLOGY 

 

3.1 Pre-requirements 

The study began with an in-depth exploration of solar radio bursts, focusing on their types, 

formation mechanisms, and impact on satellite communication. Additionally, the e-Callisto 

network and its FITS file format were studied, along with image processing techniques and 

machine learning models required for classification tasks. Data from the e-Callisto database, 

specifically FITS files recorded between 2020 and 2023, were collected using Python scripts and 

the BeautifulSoup library. These files were organized and labeled into five categories 

corresponding to solar radio burst types for efficient processing and analysis [4]. 

3.2 Preprocessing 

FITS files were converted into PNG images using Python libraries such as Astropy, Matplotlib, 

NumPy, and PIL. In these images, frequency and time data were mapped to the axes, while 

intensity values were visualized as pixel intensities [7]. To enhance the image quality, a Gaussian 

filter with a sigma value of 1 was applied to reduce noise. Thresholding based on the mean 

intensity values was then performed, resulting in binary images where significant intensity 

values appeared as white pixels. Morphological operations were used to further refine the 

images, binary erosion with a 3×3 kernel was applied to remove noise and shrink object 
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boundaries, followed by dilation to expand and enhance the foreground regions. These steps 

improved the clarity of the binary images, which were subsequently saved with labels in 

designated folders for burst detection and classification [5]. 

 

Figure 1: Solar radio burst PNG format representation with the axis 

 

Figure 2: Preprocessed solar radio burst image. Noises were eliminated using Gaussian, 

erosion, dilation, and thresholding techniques. 

3.3 Burst Identification 

Initial attempts at identifying bursts used image processing techniques based on intensity 

gradients and time frames. However, these methods were insufficient due to low true positive 

and negative rates. To address the limitations of traditional techniques, a Convolutional Neural 

Network (CNN) was implemented using TensorFlow and Keras [8]. The dataset was prepared by 

resizing images to 128×128, converting them to grayscale, normalizing pixel values, and 

encoding labels. The data was then split into 80% training and 20% testing subsets [10]. The 

CNN architecture featured convolutional, max pooling, and dense layers optimized with the 

Adam algorithm and binary cross-entropy loss. The model was trained over 10–20 epochs with a 

batch size of 32, successfully classifying images as "burst" or "no burst," enabling further 

categorization of solar radio burst types [6]. 

3.4 Burst type identification using VGG16 model 
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The VGG16 model is a widely used CNN architecture for image classification, object detection, 

and feature extraction. It comprises 16 convolutional layers, max-pooling layers, and three fully 

connected layers with 4096 neurons each. Convolutional layers preserve spatial information 

while max-pooling layers extract relevant image features. [13] ReLU activation functions are 

applied in all layers except the last, which uses the SoftMax activation function for multi-class 

classification. Pre-trained on the ImageNet dataset, VGG16 supports RGB images and adjusts 

layer weights through backpropagation and gradient descent [9]. 

 

Figure 2 : Burst-type representation with their frequency regions. 

 

4. RESULTS AND DISCUSSION 

4.1 Burst identification 

The model demonstrated excellent performance in classifying images as "burst" or "no burst," 

achieving a test/validation accuracy of 98.35%, a training accuracy of 99.12%, a test/validation 

loss of 0.0815, and a training loss of 0.0165. Test accuracy reflects the model's ability to 

generalize to unseen data, with a high value indicating reliable predictions, while training 

accuracy highlights its effectiveness in correctly classifying the training dataset. Loss metrics, 

including training and validation losses, measure the difference between predicted and true 

outputs, with low values confirming minimal error and effective learning. As shown in the 

training curve, the model's accuracy steadily increased with each epoch, reaching 99.12% on the 

training dataset, and validation accuracy of 98.35% confirms the model's strong generalization 

capability for unseen data. 
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Figure 3 : Accuracy and loss value variation of VGG16 model. 

A confusion matrix is used to visualize the model’s performance. The confusion matrix for 

obtained results is as follows, 

 
Figure 4 : Confusion matrix explained with values. 

The model predicts an actual burst as a burst in 239 instances and actual no-bursts predicted as 

no-bursts in 179 instances. Model incorrectly predicted burst as non-burst in 5 instances and 

incorrectly predicted non-burst as a burst in 2 instances. Then the model was saved to make 

predictions on unseen data. The threshold value probability is set as 0.5 and the model should 

predict unseen data as a burst or not a probability larger than 0.5. Below are some results 

obtained for the predictions for unseen data. 

4.2 Burst type identification 

The VGG16 model yielded a train accuracy of 98.72% and a train loss of 5.87%. As a result, it is 

accurate in classifying already-seen images, and the model's variance is acceptable. The 

validation model successfully classifies unseen images with a probability of 87.8%, while there 

is a small variation between predicted and actual labels with a probability of 33.35%. 

Confusion Matrix : 

True Positive (TP)  : 239 

True Negative (TN) : 179 

False Positive (FP)  : 2 

False Negative (FN) : 5 
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           Figure 5: VGG16 Model’s accuracy and loss with several epochs. 

 

 

 

       Type Ⅱ      Type Ⅲ      Type Ⅳ      Type V 

True Positives 77 96 2 48 

True Negatives 158 139 245 189 

False Positives 11 12 0 8 

False Negatives 8 

 

7 7 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1- True positive, True negative, False positive, and False negative 

values obtained for VGG16 with ImageNet 
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 Precision Recall F1-Score Support 

Type 2 0.88 0.91 0.89 85 

Type 3 0.89 0.93 0.91 103 

Type 4 1.00 0.22 0.36 9 

Type 5 0.86 0.84 0.85 57 

Accuracy  0.88 254 

Macro Avg 0.91 0.73 0.75 254 

Weighted Avg 0.88 0.88 0.87 254 

 

  

Figure 6 : ROC Curve of VGG16 model. 

The classification report highlights the model's performance across different burst types. While 

types II, III, and V showed high precision, recall, and F1-scores (88-100% precision, 84-93% recall, 

and 85-91% F1), type IV performed poorly due to its low recall (22%) and limited support. 

Precision measures the accuracy of positive predictions, recall evaluates the model's ability to 

identify all positive instances, and the F1-score balances both metrics. The overall results indicate 

good performance for types II, III, and V, but the low support for type IV limits the model's 

effectiveness in identifying this class. 

 

Table 2 : Classification report of the VGG16 model for each type of burst 
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The ROC curve used to visualizes the relationship between the True positive rate (TPR) and 

False positive rate(FPR) across different threshold values. This ROC curve is considered a 

perfect curve if it passes through the upper left corner (TPR=1, FPR=0). It indicates high 

sensitivity and a low false positive rate. The area under the ROC curve shows the overall 

performance of the model. The higher AUC shows better adaptability. AUC value closer to 1 

represents a good model. 

Compared to the other two models, VGG16 demonstrated superior performance with the highest 

accuracy and the lowest loss values. This highlights its effectiveness in feature extraction and 

classification tasks, making it the most reliable model for the dataset under consideration. The 

architecture's depth and robust design contribute to its ability to generalize well, outperforming 

both ResNet and AlexNet in terms of predictive accuracy and minimizing error. 

 

 

4 CONCLUSION 

This study explored the classification of Solar Radio Bursts using machine learning, focusing on 

identifying and categorizing burst types. Spectrograms were first classified as burst or no burst 

using the VGG16 model with ImageNet, followed by the evaluation of three machine-learning 

models for burst-type classification. VGG16 demonstrated the best performance, effectively 

identifying bursts and categorizing them. Previous studies have used machine learning models to 

classify FITS images as either containing a burst or not. However, no research has focused on 

classifying these bursts into the five main types. This model achieves a validation accuracy of 

98% and a loss value of 8.15% for distinguishing bursts or non-bursts, demonstrating superior 

performance compared to other studies. Type I images were excluded from the study due to the 

absence of satellite capturing. While the model performs well in classifying the five main burst 

types, achieving a validation accuracy of 87.8%, the lack of Type IV compared to other types, 

results in a significant loss value of 33.35%. This loss can be reduced by supplying more Type 

IV burst images to the model. The findings highlight the potential to improve results by 

including more type IV images and suggest extending this work to build a comprehensive Solar 

Radio Burst database. These advancements could enable automated classification systems to 

predict and mitigate the impact of bursts on Earth's ionosphere. 
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