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ABSTRACT 

This paper presents an Artificial Intelligence approach for rainfall forecasting over 
Colombo, the commercial capital of Sri Lanka on monthly scale. Feature sets extracted 
from surface level, large scale climate indices over oceans and continents were used in 
developing the network. From the available teleconnection indices, a total of ten indices 
were selected for the present study. This study emphasizes the value of using large-scale 
climate teleconnections for rainfall forecasting and the significance of Artificial 
Intelligence approaches like LSTM and ANNs in predicting the uncertain rainfall.  
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1 INTRODUCTION 
A reliable prediction of Sri Lankan Rainfall (SLR) on a monthly scale is scientifically 
challenging and important for planning and implementing food production and water 
management strategies in the country. The continuous changes in global climate and the 
uneven spatial and temporal distribution of rainfall are causes for severe problems like 
floods and droughts. Meteorological researchers have used various approaches to study 
and predict the seasonal and intra-seasonal rainfall. To forecast the rainfall at different 
spatial and temporal scales, the artificial neural network models used in the past can be 
broadly classified as empirical and dynamical [1]. This study is concerned with empirical 
models only. The reasonable success achieved by the empirical approach has motivated 
persistent exploration of regional/global teleconnections of the monsoon season since 
Walker’s time, which resulted in many predictors as well as a variety of statistical 
techniques. Because any modeling effort in meteorological forecasts will have to be 
based on an understanding of the variability of unstructured and noisy climatic past data, 
because of the variability of weather, ANNs have some special characteristics in this 
regard to be used. In contrast to conventional modeling approaches, ANNs do not require 
an in-depth knowledge of driving processes, nor do they require the form of the model to 
be specified a priori [2]. This is true when modeling various climate variables for 
forecasting of hydrological variables like rainfall and stream flows. Thus, ANNs are a 
suitable approach for predicting Sri Lankan rainfall using large scale climate variables as 
input to the network. 
At present, the assessment of the nature and causes of seasonal climate variability is still 
uncertain. There are still uncertainties associated with local and global climatic variables. 
For any rainfall prediction model, these are sources of variance in predictability (Kumar 
et al., 1995). Recently, climatic researchers have studied the influence and the possible 
relationships between various global climate variables and rainfall. Additionally, they 
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brought out several regional parameters based on sea-level pressure, temperature, wind 
fields and sea surface temperature (SST) data from the seas. Although their performance 
in seasonal forecasting has been encouraging, there is still a large variance in the rainfall 
unaccounted by the predictors identified so far [3].  
Several observational and modeling studies have indicated that the slowly varying 
surface boundary conditions constitute a major forcing factor on the inter-annual 
variability of the rainfall. Parameters representing these conditions, global as well as 
regional, provide a handle for seasonal prediction. No clear pattern or trend has been 
observed in rainfall in Sri Lanka from previous studies. Some studies observed that the 
mean rainfall is showing a decreasing trend [4] and some studies identified that the 
frequency of heavy rainfall events increase in central highlands during the recent period 
[5]. Analyzing fluctuations in rainfall associated with the four climatic seasons using 
rainfall data for nearly 130 years (1870-2000) from 15 rainfall stations [6] identified that 
decrease of rainfall in highlands and increase of rainfall in lowlands in the southwestern 
sector of Sri Lanka during southwest monsoon season. Rainfall during the Northeast 
Monsoon season, none of the stations show any significant change. While analyzing 
rainfall data for more than 100 years (1895-1996) [7] observed that no coherent increase 
or decrease of rainfall in stations in the wet or dry zones. However, not much research 
has been reported in literature on long range rainfall forecasting using teleconnection 
indices in Sri Lanka. 

1.1 Teleconnections and Teleconnection patterns 
Teleconnections are linkages between weather changes occurring in widely separated 
regions of the globe. 
Repeatedly happening a large-scale pressure and circulation anomalies which extend over 
vast geographical areas and continuing without any interruption is known as 
teleconnection patterns. Sometimes they can be appearing for a few sequential years and 
hence producing significant anomalies in both the interannual and interdecadal changes 
in the atmospheric circulations. The selected teleconnection indices are; Pacific / North 
American Pattern (PNA), Western Pacific Oscillations (WP), Eastern Asia/ Western 
Russia (EA/WR), North Atlantic Oscillations (NAO), North Pacific Pattern (NP), 
Northern Oscillations (NO), Pacific Decadal Oscillations (PDO), Western Hemispherical 
Warm Pool (WHWP), Tropical Northern Atlantic Pattern (TNA), Tropical Southern 
Atlantic Pattern (TSA), Southern Oscillation Index (SOI) and El-Nino Southern 
Oscillations (Nino).  

1.2 Forecasting Rainfall using Artificial Neural Networks (ANNs) 
The methods for the prediction of data can be basically categorized into two types, classic 
statistical algorithms, and machine learning algorithms. Statistical methods are applicable 
for linear applications, whereas machine learning algorithms are applicable for non-linear 
applications such as prediction of rainfall. In machine learning algorithms, neural 
network are two types, namely, Feed Forward Neural Networks (FFNNs) and Recurrent 
Neural Networks (RNNs). Recurrent Neural Network is an extension of feed-forward 
neural network that has an internal memory. RNN is recurrent in nature as it performs the 
same function for every input of data while the output of the current input depends on the 
past one computation. After producing the output, it is copied and send back into the 
recurrent network. To predict, it considers the output that it has learned from the previous 
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